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Abstract The deep quench obstacle problem models phase separation at low temperatures.
During phase separation, domains of high and low concentration are formed, then coarsen
or grow in average size. Of interest is the time dependence of the dominant length scales
of the system. Relying on recent results by Novick-Cohen and Shishkov (Discrete Contin.
Dyn. Syst. B 25:251–272, 2009), we demonstrate upper bounds for coarsening for the deep
quench obstacle problem, with either constant or degenerate mobility. For the case of con-
stant mobility, we obtain upper bounds of the form t1/3 at early times as well as at times

t for which E(t) ≤ (1−u2)

4 , where E(t) denotes the free energy. For the case of degenerate
mobility, we get upper bounds of the form t1/3 or t1/4 at early times, depending on the value

of E(0), as well as bounds of the form t1/4 whenever E(t) ≤ (1−u2)

4 .

Keywords Phase separation · Upper bounds · Coarsening · Obstacle problem ·
Cahn-Hilliard

1 Introduction

The deep quench obstacle free boundary problem

(DQ)

{
∂u
∂t

= ∇ · M(u)∇w, (x, t) ∈ �T ,

w + ε2�u + u ∈ ∂�(u), (x, t) ∈ �T ,

was apparently first proposed by Oono and Puri [17] as a phenomenological model for phase
separation. In (DQ), ε > 0, ∂�(·) is the sub-differential of the indicator function I[−1,1](·),
and u(x, t), which represents the concentration of one of the two components of a binary
mixture, should satisfy ∂νu = 0 on the “free boundary” where u = ±1, and ∂nu = 0 on ∂�.
We shall assume that �T = (0, T ) × �, where 0 < T < ∞ and � is a bounded convex do-
main. We shall focus on a degenerate mobility variant of (DQ) in which M(u) = 1 − u2,
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as well as on a constant mobility non-degenerate variant in which M(u) = 1. Although
there has been more study of phase separation models with non-degenerate, or more specif-
ically, constant mobilities, degenerate mobilities reflect somewhat more careful modeling
and should capture some of the underlying physics more accurately.

The deep quench obstacle problem (DQ) also corresponds to the zero temperature or
deep quench limit of the Cahn-Hilliard equation [10],

(CH)

⎧⎪⎨
⎪⎩

ut = ∇ · M(u)∇w, (x, t) ∈ �T ,

w = �
2 {ln (1 + u) − ln (1 − u)} − u − ε2�u, (x, t) ∈ �T ,

n · ∇u = n · ∇w = 0, (x, t) ∈ ∂�T ,

where n denotes the unit exterior normal to ∂�, � is a scaled temperature, and M(u) =
1 −u2 or M(u) = 1. See [6, 7, 14, 15]. Indeed existence results for (DQ) can be obtained by
considering appropriate limits of solutions to (CH). Existence results were first proven for
M(u) = 1 by Blowey and Elliott [4], and later for M(u) = 1 − u2 by Elliott and Garcke [9].
See the discussion in [3]. Numerical schemes for (DQ) have been developed for the constant
mobility case by Blowey and Elliott [5] and for the degenerate mobility case by Bǎnas and
Nürnberg [1, 2].

Recently, numerical simulations have been undertaken to explore and compare the dy-
namic properties of the constant mobility and the degenerate mobility deep quench obstacle
problem by Bǎnas, Novick-Cohen and Nürnberg [3]. For initial conditions corresponding
to a perturbation of a spatially uniform state, the dynamics for the deep quench obstacle
problem (DQ) is roughly similar to that of the Cahn-Hilliard equation (CH), if the initial
conditions u0 satisfy 1

|�|
∫

�
u0 dx ∈ (−1,1), and thus lie in the linearly unstable regime (be-

low the spinodal). The basic stages of evolution include an initial period of linear instability
during the onset of phase separation (spinodal decomposition or the linear regime), followed
by an intermediate period during which local saturation to u± = ±1, which correspond to
near equilibrium phases, occurs throughout most of the domain, followed finally by coars-
ening during which the characteristic dimensions of the support of the equilibrium phases
grow. The initial conditions described above are physically reasonable and easily imple-
mented, and the various qualitative stages in the evolution of the dynamics have often been
reported experimentally.

A way to follow phase separation as it progresses through the various stages is to track
some indicator of the dominant length scale of the system as a function of time. At early
times, the length scale should roughly reflect the most unstable modes of the linear unstable
regime, and during coarsening the average length scale for the system should be seen to
grow. In the present paper we adopt the approach of Kohn and Otto [12] and Novick-Cohen
and Shishkov [16], using two underlying length scales, to be denoted by E−1(t) and L(t),
and define the parametric set of length scales, S−1(t, t; r, ϕ) for 0 ≤ t < t and (r, ϕ) ∈ 	,
where

S(t, t; r, ϕ) := (t − t)−1/r‖EϕL−(1−ϕ)‖Lr ([t,t]),

and t = 0, t∗ or t∗, where t∗, t∗ are transitional values to be prescribed, and 	 is a suitably
prescribed set. By the combined use of an algebraic bound and a differential inequality,
rigorous time dependent upper bounds are obtained in terms of S−1(t, t; r, ϕ). This general
approach has been implemented in recent years in various applications where coarsening
occurs. See for example [8, 13, 18].

Our approach differs from that of [12] in that we obtain upper bounds both at early and
late times. Our approach also differs from that of [16] in that we carefully delineate the co-
efficients and exponents appearing in the upper bounds, which in turn reflect our choice of
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the parameters (r, ϕ) as well as the initial values of E(t) and L(t), and indicate the realm of
applicability of our results in terms of the initial conditions and the value of the free energy
functional E(t). This entails estimating E(t) and L(t), and identifying certain transitional
values [16]. This also allows our results to be readily comparable with the predictions of
Bǎnas, Novick-Cohen and Nürnberg [3]. To facilitate comparison, the scalings and nota-
tions employed in [3] are used throughout. We emphasize that though the results presented
here are for (DQ), the deep quench obstacle problem, the methodology and the qualitative
conclusions carry over directly to the (CH) framework with either constant or degenerate
mobility.

The first length scale, L(t), is based on the norm of u(x, t) in a space whose dual is
W 1,∞(�). Since the mean mass, ū = 1

|�|
∫

�
u(x, t)dx, is time invariant for (DQ) [4, 9], it is

convenient to define

L(t) := sup
ξ∈Y

1

|�|
∫

�

(u(x, t) − ū)ξ(x) dx, (1.1)

where

Y :=
{
ξ ∈ W 1,∞| sup

�

ε|∇ξ | = 1
}
. (1.2)

That L(t) acts as a length scale for spatial variation in the concentration can be seen directly
from (1.1)–(1.2).

The second length scale, E−1(t), shall be based on the free energy

E(t) := 1

2|�|
∫

�

{
ε2|∇u|2 +

[
∂W

∂u

]2}
|u=u(x,t)

dx, (1.3)

where

∂W

∂u
= (1 − u2)1/2. (1.4)

During the later stages of coarsening the system is approximately partitioned into regions in
which u = ±1, hence

E(t) ≥ 1

|�|
∫

�

ε|∇W(u)|dx = 1

|�|
∫

�

ε(1 − u2)1/2|∇u|dx,

≈ επ

2|�| |perimeter of interfacial regions|. (1.5)

The transitional times t∗, t∗ are defined in terms of the time at which E(t) attains the values
1
2 and (1−u2)

4 , respectively.
We summarize our main results as follows:

1. If E(0) ≤ (1−u2)

4 , then for t > 0 there are upper bounds of the form [ t

ε2 ]1/3 for (DQ)
with constant mobility and upper bounds of the form [ t

ε2 ]1/4 for (DQ) with degenerate
mobility.

2. For (DQ) with constant mobility, if (1−u2)

4 < E(0), then for 0 < t ≤ min{ε2, t∗} there are
upper bounds of the form [ t

ε2 ]1/3, and when t > t∗ there are bounds of the form [ t−t∗
ε2 ]1/3.

3. For (DQ) with degenerate mobility, if (1−u2)

4 < E(0) < 1
2 , then for 0 < t ≤ min{ε2, t∗}

there are upper bounds of the form [ t

ε2 ]1/4, and when t > t∗, (and therefore E(t) ≤
(1−u2)

4 ), there are bounds of the form [ t−t∗
ε2 ]1/4.
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4. For (DQ) with degenerate mobility, if 1
2 < E(0), then for 0 < t ≤ min{ε2, t∗} there are

upper bounds of the form [ t

ε2 ]1/3, when t∗ < t ≤ min{t∗ + ε2, t∗} there are upper bounds

of the form [ t−t∗
ε2 ]1/4, and when t > t∗ there are upper bounds of the form [ t−t∗

ε2 ]1/4.

See Theorems 4 and 5 in Sect. 5 for further details. Note that the upper bounds listed
above in 2.–4. may contain temporal gaps. While the bounds above which are prescribed to
hold on semi-infinite intervals should hold when the length scale is evaluated based on E(t)

only, i.e. based on S−1(t, t; r, ϕ) with ϕ = 1, the upper bounds which are stated as being
valid on short intervals are based on evaluation of both E(t) and L(t), i.e. they are based on
S−1(t, t; r, ϕ) with ϕ < 1.

In Sect. 2, algebraic bounds, differential inequalities, and implied upper bounds are ob-
tained which rely heavily on the results of [12, 16]. In Sect. 3, as in [16], time dependent
transitions in the upper bounds are prescribed which depend on the initial conditions and
on the times t∗, t∗. In Sect. 4, some comments are made regarding the values that L(0) and
E(0) may assume, in particular for initial conditions which reflect a perturbation of a spa-
tially uniform state. Afterwards, the predicted growth rates, waiting times and coefficients
in the upper bounds outlined in Sect. 3 are analyzed. In Sect. 5, the information from Sect. 4
is incorporated into the results from Sect. 3, and the resultant upper bounds are outlined in
Theorems 4 and 5.

2 Estimates, Inequalities, and Bounds

In this section we present three lemmas and a corollary, which provide the basis for the
conclusions in the remainder of the paper. The general framework here follows [12, 16]
closely.

The first lemma gives an algebraic bound from below in terms of E(t) and L(t).

Lemma 1 Suppose that |ū| < 1, then for t ≥ 0,

1 ≤ 25/2

(1 − ū2)

[
3

(
E(t) + ε|∂�|

|�|
)

L(t)

]1/2

+ 1

(1 − ū2)
2E(t). (2.1)

Proof See [16, Lemma 4.1]. �

The formulation here is a little simpler than in [16], since an alternative given there has
been eliminated which does not eventually provide useful information in terms of the upper
bounds.

Remark 2.1 If the domain � is sufficiently small, phase separation does not occur and the
uniform state u = ū is stable, [11]. In this case Emin = 1

2|�| (1−u2). Typically, though, phase
separation does occur and referring to (1.5), and recalling the asymptotic �-convergence
estimate [15, 19],

Emin ∼ επ

2|�| |perimeter of interfacial regions|. (2.2)

In either case, we have that Emin > 0 if |ū| < 1. If phase separation followed by coarsening
occurs, which is the case of interest which we focus on here, as we are considering convex
domains, the minimal amount of surface area for a completely partitioned system is O(|∂�|)
and typically much smaller. So (2.2) implies the lower bound O(ε|∂�|/|�|) for Emin.
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Remark 2.2 Although the term ε|∂�|
|�| in Lemma 1 scales as 1

length and becomes arbitrarily
small in appropriate large domain limits, for finite domains this term can be seen from (2.2)
to compete with Emin in the long time limit. Note this term does not arise at all if periodic
boundary conditions are considered, and a bound like (2.1) but without boundary terms
proportional to ε|∂�|

|�| can also be obtained for rectangular domains with Neumann boundary
conditions.

Neglecting the boundary term in (1.5) for the sake of simplicity, the following corollary
(see [16, Corollary 4.4]) is an immediate consequence of Lemma 1.

Corollary 1 Suppose that |ū| < 1. Then for any t ≥ 0, either

(i) E >
(1 − ū2)

4
, or

(ii) E ≤ (1 − ū2)

4
and EL ≥ 1

384
(1 − ū2)2.

Corollary 1, as well as Lemma 1 and Lemmas 2–4 which follow, can all be generalized
to incorporate the boundary term by restating the results in terms of

Ẽ = E + ε|∂�|
|�| . (2.3)

For simplicity, we shall not write down this generalization explicitly.
Lemma 2 and Lemma 3 provide a differential inequality in terms of E(t), L(t), and their

time derivatives for (DQ) with constant and degenerate mobility, respectively. The analysis
for the degenerate and for the nondegenerate cases is a little different. For (DQ) with constant
mobility, we have the following result. See [12, Lemma 2] and [16, Lemma 4.2].

Lemma 2 Suppose that u(x, t) denotes a solution to (DQ) with constant mobility and
|ū| < 1. Then

ε2|L̇|2 ≤ −Ė. (2.4)

For (DQ) with degenerate mobility, we first note that (1.3)–(1.4) imply

1

|�|
∫

�

(1 − u2)dx ≤ min{1,2E(t)}. (2.5)

Using (2.5), we may proceed as in the proof of [16, Lemma 4.3] to obtain the following,
slightly stronger, result.

Lemma 3 Suppose that u(x, t) denotes a solution to (DQ) with degenerate mobility and
|ū| < 1. Then

ε2|L̇|2 ≤ −min{1,2E}Ė. (2.6)

Proof Arguing as in [12, Lemma 2], it follows that

ε|L̇| ≤ 1

|�|
∫

�

|J |dx,
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and

−Ė ≥ 1

|�|
∫

�

1

(1 − u2)
|J |2 dx,

where

J = −(1 − u2)∇[u + �u],
and hence by the Cauchy-Schwartz inequality,

ε2|L̇|2 ≤ −Ė
1

|�|
∫

�

(1 − u2) dx. (2.7)

Now (2.5), (2.7) imply (2.6). �

The lemma below provides upper bounds based on the results of our earlier lemmas. It
follows directly from [16, Lemma 3.3] upon rescaling time t → t/ε2 in accordance with the
scaling of time adopted here. See also [12, Lemma 3].

Lemma 4 Suppose that

ε2|L̇|2 ≤ −AEαĖ, 0 < t, (2.8)

where α = 0 or 1, and A is a positive constant. Let (r, ϕ) ∈ 	(α), where 	(α) is defined by
the inequalities

0 ≤ ϕ ≤ 1, r < 3 + α, ϕr > 1 + α, (1 − ϕ)r < 2. (2.9)

Set

S(0, t; r, ϕ) = t−1/r‖EϕL−(1−ϕ)‖Lr ([0,t]), (2.10)

and

γ1 = (1 + α) − ϕr, γ2 = 1 − 1

2
(1 − ϕ)r,

σ1 = −(1 + α) + ϕ(3 + α),σ2 = −(1 + α) + 2ϕ

1 − ϕ
, (2.11)

ξ = −A−1γ1γ
−2
2 (1 − ρ−γ2)2, where ρ > 1 is arbitrary.

(i) If there exists a positive constant B such that

LE ≥ B, t ≥ 0, (2.12)

then

Sr(0, t; r, ϕ) + ε2t−1L(0)(3+α)−r ≥ ε
2r

3+α ϑ1t
− r

(3+α) , t > 0, (2.13)

where

ϑ1 =
[

3 + α

2(3 + α) − 2r

[
(ξBσ1)

r
(3+α)−r + Bϕrρ−r

]] (3+α)−r
(3+α)

. (2.14)
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(ii) If there exists a positive constant C such that

E ≥ C, t ≥ 0, (2.15)

then

Sr(0, t; r, ϕ) + ε2t−1L(0)2−(1−ϕ)r ≥ ε(1−ϕ)rϑ2t
− (1−ϕ)r

2 , t > 0, (2.16)

where

ϑ2 =
[

1

2 − (1 − ϕ)r

[
(ξCσ2)

(1−ϕ)r
2−(1−ϕ)r + Cϕrρ−(1−ϕ)r

]] 2−(1−ϕ)r
2

. (2.17)

3 Transitional Upper Bounds

The results in this section demonstrate how various different upper bounds can hold over
the course of phase separation. Theorem 2, for (DQ) with constant mobility, which appears
in [16] as Theorem 4.5, is presented here for the sake of completeness. Theorem 3, which
then follows for (DQ) with degenerate mobility, is similar to [16, Theorem 4.6], but relies
on Lemma 3 which is slightly stronger than [16, Lemma 4.3] which was used in proving
Theorem 4.6 in [16].

For (DQ) with either constant or degenerate mobility, if t1 < t2, then E(t1) ≥ E(t2). See
[4, 9]. Hence we may define

t∗ = sup
{{0} ∪ {t ∈ (0,∞)|E(t) > 1/2}},

t∗ = sup
{{0} ∪ {t ∈ (0,∞)|E(t) > (1 − ū2)/4}}.

Note that t∗ ≤ t∗, since 1/2 > (1 − ū2)/4.
For (DQ) with constant mobility, assuming the boundary contribution ε|∂�|

|�| to be negligi-
ble for the sake of simplicity and noting that (2.4) is autonomous, Lemma 2, Lemma 4, and
Corollary 1 imply the following:

Theorem 2 Let |ū| < 1 and (r, ϕ) ∈ 	(0).

I. If t∗ = 0, then

Sr(0, t; r, ϕ) ≥ ε
2r
3 ϑ1t

− r
3 − ε2t−1L(0)3−r , t > 0,

where ϑ1 = ϑ1(A,B,α, r,ϕ) with A = 1, B = 1
384 (1 − ū2)2, α = 0.

II. If 0 < t∗ < ∞, let t1 > t∗ be arbitrary. Then

Sr(0, t; r, ϕ) ≥ εr(1−ϕ)ϑ2t
− r(1−ϕ)

2 − ε2t−1L(0)2−(1−ϕ)r , 0 < t ≤ t1,

where ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 1, C = E(t1), α = 0, and

Sr(t∗, t; r, ϕ) ≥ ε
2r
3 ϑ1(t − t∗)− r

3 − ε2(t − t∗)−1L(t∗)3−r , t > t1,

where ϑ1 = ϑ1(A,B,α, r,ϕ) with A = 1, B = 1
384 (1 − ū2)2, α = 0.
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III. If t∗ = ∞, then

Sr(0, t; r, ϕ) ≥ εr(1−ϕ)ϑ2t
− r(1−ϕ)

2 − ε2t−1L(0)2−(1−ϕ)r , t > 0,

where ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 1, C = E(∞), α = 0.

Since Sr(t1, t2; r, ϕ) ≥ 0 for 0 ≤ t1 ≤ t2, the estimates given above provide nontrivial
bounds only if the sum of the two terms on the right hand side of the various estimates
is positive. Similar considerations hold for the estimates which are obtained for (DQ) with
degenerate mobility given below in Theorem 3.

To obtain estimates for (DQ) with degenerate mobility, note that min{1,2E} = 1 when
E > 1/2 and min{1,2E} = 2E when E < 1/2. Hence, assuming the boundary effects to
be negligible for the sake of simplicity and noting that (2.6) is autonomous, it follows from
Lemma 3, Lemma 4, and Corollary 1 that

Theorem 3 Let |ū| < 1.

I. If 0 = t∗ = t∗, then for (r, ϕ) ∈ 	(1),

Sr(0, t; r, ϕ) ≥ ε
r
2 ϑ1t

− r
4 − ε2t−1L(0)4−r , t > 0,

where ϑ1 = ϑ1(A,B,α, r,ϕ) with A = 2, B = 1
384 (1 − ū2)2, α = 1.

II. If 0 = t∗ < t∗ < ∞, let t1 > t∗ be arbitrary. Then for (r, ϕ) ∈ 	(1),

Sr(0, t; r, ϕ) ≥ εr(1−ϕ)ϑ2t
− r(1−ϕ)

2 − ε2t−1L(0)2−(1−ϕ)r , 0 < t ≤ t1,

where ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 2, C = E(t1), α = 1, and

Sr(t∗, t; r, ϕ) ≥ ε
r
2 ϑ1(t − t∗)− r

4 − ε2(t − t∗)−1L(t∗)4−r , t > t1,

where ϑ1 = ϑ1(A,B,α, r,ϕ) with A = 2, B = 1
384 (1 − ū2)2, α = 1.

III. If 0 < t∗ < t∗ = ∞, let t1 > t∗ be arbitrary. Then

Sr(0, t; r, ϕ) ≥ εr(1−ϕ)ϑ2t
− r(1−ϕ)

2 − ε2t−1L(0)2−(1−ϕ)r , 0 < t ≤ t1,

for (r, ϕ) ∈ 	(0), and ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 1, C = E(t1), α = 0, and

Sr(t∗, t; r, ϕ) ≥ εr(1−ϕ)ϑ1(t − t∗)− r(1−ϕ)
2 − ε2(t − t∗)−1L(t∗)2−(1−ϕ)r , t > t1,

for (r, ϕ) ∈ 	(1), and ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 2, C = E(∞), α = 1.
IV. If 0 < t∗ < t∗ < ∞, let t2 > t∗ > t1 > t∗ be arbitrary. Then

Sr(0, t; r, ϕ) ≥ εr(1−ϕ)ϑ2t
− r(1−ϕ)

2 − ε2t−1L(0)2−(1−ϕ)r , 0 < t ≤ t1,

for (r, ϕ) ∈ 	(0), and ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 1, C = E(t1), α = 0, and

Sr(t∗, t; r, ϕ) ≥ εr(1−ϕ)ϑ1(t − t∗)− r(1−ϕ)
2 − ε2(t − t∗)−1L(t∗)2−(1−ϕ)r , t1 < t ≤ t2,

for (r, ϕ) ∈ 	(1), and ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 2, C = E(t2), α = 1, and

Sr(t∗, t; r, ϕ) ≥ ε
r
2 ϑ1(t − t∗)− r

4 − ε2(t − t∗)−1L(t∗)4−r , t > t2,

for (r, ϕ) ∈ 	(1), and ϑ1 = ϑ1(A,B,α, r,ϕ) with A = 2, B = 1
384 (1 − ū2)2, α = 1.
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V. If t∗ = ∞, then for (r, ϕ) ∈ 	(0),

Sr(0, t; r, ϕ) ≥ εr(1−ϕ)ϑ2t
− r(1−ϕ)

2 − ε2t−1L(0)2−(1−ϕ)r , 0 < t, (3.1)

where ϑ2 = ϑ2(A,C,α, r,ϕ) with A = 1, C = E(∞), α = 0.

4 The Implications of Theorems 2 and 3

In looking at Theorems 2 and 3, it can be seen that in order to understand their implications,
a few considerations need to be taken into account. First of all, these theorems contain a
number of initial condition dependent quantities, namely E(0), L(0), L(t∗), L(t∗), E(∞),
in addition to u. Thus it would be good to have some intuition with regard to the values that
these quantities can assume. Moreover, the results are stated in terms of (r, ϕ) ∈ 	(α). Thus
a panoply of upper bounds is provided, which leads naturally to the question of identifying
upper bounds which are optimal in some sense. Furthermore, while the bounds given are
nonnegative and hence nontrivial at sufficiently large times, it is not immediately clear as to
whether there exists some waiting time for the bounds to become nontrivial. Finally, as the
bounds contain various coefficients, it is good to have some handle on these values. In this
section, these issues are addressed.

4.1 Estimating E(0),L(0),L(t∗),L(t∗), E(∞)

Note that E(0), L(0), L(t∗), E(∞) appearing in Theorem 2, as well as E(0), L(0), L(t∗),
L(t∗), E(∞) appearing in Theorem 3 depend on the choice of the initial data. Clearly u also
depends on the initial data, since u = u0. With regard to E(0) and E(∞), since E(t) is a
nonincreasing function of time, we have that

Emin ≤ E(∞) ≤ E(0),

where estimates on Emin were mentioned in Remark 2.1. From the definition of E(t∗), it
follows that if 0 < t∗ < ∞, then E(t∗) = 1

4 (1 −u2) and hence L(t∗) ≥ 1
96 (1 −u2) according

to (ii) in Corollary 1. It is less straightforward to estimate L(t∗) and L(∞), though L(0) as
well as E(0) can be calculated given specific initial conditions.

Some intuition can be gained by considering initial conditions which constitute pertur-
bations of u,

u0(x) = u + ũ0(x), (4.1)

where 1
|�|

∫
�

ũ0 dx = 0. Linearization of (DQ) about u indicates the existence of a fastest
growing mode given by

u0(x) = u + a cos(kmaxx), (4.2)

where kmax = (
√

2ε)−1, which grows as eσmaxt with σmax ≈ M(u)/(4ε2).
Note that for systems reflecting perturbations of u, (1.3) and (4.2) imply that E(0) =

(1−u2)

2 + O(a2), where |a| � 1. Thus, in this context, (1−u2)

2 + O(a2) provides an upper
bound on E(∞). Within this context, it is not unreasonable to suppose that t∗ = 0 and that
0 < t∗, which corresponds to Cases (II) and (III) of Theorems 2 and 3, and makes the other
cases unnecessary to consider. Moreover, if t∗ = 0, then L(t∗) = L(0). Assuming L(0) to
reflect (4.2) would imply that L(0) = O(|a|), where a is the amplitude of the fastest growing
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mode. If t∗ = 0, is seems reasonable to expect that t∗ = O(1), so that Case (II) in Theorems 2
and 3 should be considered. If, say, |�| is sufficiently small and complete phase separation
does not ensue, then conceivably t∗ = ∞, making Cases (III) and (V) relevant to consider.
As |�| becomes small, boundary effects which have been neglected can become important,
and the results outlined above need to be suitably revised.

4.2 Estimating the Predicted Growth Rates

We turn now to the implications of the inequalities appearing in Lemma 4 in terms of upper
bounds on the coarsening rates. The inequalities in (2.9) defining 	(α) imply that 	(α) is
the convex region bounded by

I = {(r, ϕ) = (r,1) | 1 + α < r < 3 + α},

II =
{
(r, ϕ) = (3 + α,ϕ)

∣∣∣ 1 + α

3 + α
≤ ϕ ≤ 1

}
, and

III =
{
(r, ϕ) =

(
r,

1 + α

r

)∣∣∣1 + α ≤ r ≤ 3 + α

}
,

(4.3)

with I ⊂ 	(α), and we set (r∗, ϕ∗) := (3 + α, 1+α
3+α

) = II ∩ III. See Figs. 1, 2 in [12].
Since the left hand side of (2.13) is nonnegative, for (2.13) to have nontrivial content,

one needs that ε2L(0)(3+α)−r < ϑ1ε
2r

3+α t
(3+α)−r

3+α . Since r < 3 + α within 	, this implies the
constraint

t > ε2L(0)(3+α)ϑ
− 3+α

(3+α)−r

1 . (4.4)

Noting that 2 − (1 − ϕ)r > 0 within 	, (2.16) similarly implies the constraint

t > ε2L(0)2ϑ
− 2

2−(1−ϕ)r

2 . (4.5)

Analogous considerations in the context of the inequalities appearing in Theorems 2 and 3,
imply the constraints

t − t∗ > ε2L(t∗)(3+α)ϑ
− 3+α

(3+α)−r

1 , (4.6)

and

t − t∗ > ε2L(t∗)2ϑ
− 2

2−(1−ϕ)r

2 . (4.7)

From (4.4)–(4.7), it follows that an understanding of the values assumed by ϑ
− 3+α

(3+α)−r

1 ,

ϑ
− 2

2−(1−ϕ)r

2 is required, in order to ascertain whether or not there is a waiting time for (2.13),
(2.16), and the inequalities appearing in Theorem 2 and 3 to assume nontrivial content.

Before addressing this question, in the result that follows, we shall assume (4.4)–(4.7) to
hold as necessary and estimate the implied growth rates.

Claim 1 Let α, ε, L(0), L(t∗), L(t∗) be given, and assume ϑ1, ϑ2 to be prescribed and
bounded.

If t > t∗, then (2.13), (4.4), (4.6) imply upper bounds that are proportional to [ t

ε2 ] 1
3+α , if

t∗ = 0, and to [ t−t∗
ε2 ] 1

3+α , if t∗ > 0.
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Similarly, if t∗ < t ≤ min{t∗ + ε2, t∗}, then (2.16), (4.5), (4.7) imply upper bounds that

are proportional to [ t

ε2 ] 1
3+α , if t∗ = 0, and to [ t−t∗

ε2 ] 1
3+α , if t∗ > 0.

Proof If t > t∗ = 0 and (4.4) holds, then (2.13) implies that

S−1(0, t; r, ϕ) ≤ ϑ
− 1

r

1

(
t

ε2

) 1
(3+α)

[
1 − ϑ1

−1

[
L3+α(0)ε2

t

] (3+α)−r
3+α

]− 1
r

, (4.8)

for (r, ϕ) ∈ 	(α), and an upper bound with growth proportional to [ t

ε2 ] 1
3+α is implied. If

t > t∗ > 0 and (4.6) holds, then exploiting the autonomous nature of Lemmas 2 and 3, a

similar inequality based on S−1(t∗, t; r, ϕ) implies an upper bound proportional to [ t−t∗
ε2 ] 1

3+α .
If 0 = t∗ < t ≤ min{ε2, t∗} and (4.5) holds, then (2.16) implies that

S−1(0, t; r, ϕ) ≤ ϑ
− 1

r

2

(
t

ε2

) (1−ϕ)
2

[
1 − ϑ2

−1

[
L2(0)ε2

t

] 2−(1−ϕ)r
2

]− 1
r

, (4.9)

for (r, ϕ) ∈ 	(α), and an upper bound with growth proportional to [ t

ε2 ] (1−ϕ)
2 is implied. If

0 < t∗ < t ≤ min{t∗ + ε2, t∗} and (4.7) holds, a similar inequality based on S−1(t∗, t; r, ϕ)

implies an upper bound proportional to [ t−t∗
ε2 ] 1

3+α .
Examining 	(α), we see that

0 <
(1 − ϕ)

2
<

(1 − ϕ∗)
2

= 1

3 + α
, (4.10)

with ϕ assuming the value ϕ∗ in the upper left hand corner of 	(α), where (r, ϕ) = (r∗, ϕ∗).
Since 0 < t − t∗ < ε2, within the present framework, the best upper bound is achieved by tak-

ing the exponent as large as possible, yielding [ t

ε2 ] 1
3+α (or [ t−t∗

ε2 ] 1
3+α ) as the upper bound. �

Remark 4.1 The procedure used here is to fix ϑ1, ϑ2, and to examine the implied growth
rates, then to allow (r, ϕ) ∈ 	(α) and hence ϑ1, ϑ2 to vary in minimizing the waiting time
and in examining the rate coefficients. With regard to (2.13), (4.4), (4.6), the choice of
(r, ϕ) ∈ 	(α) does not effect the growth rate, so this approach is benign. With regard to
(2.16), (4.5), (4.7), the choice of (r, ϕ) ∈ 	(α) minimizing waiting time is also the best
choice in terms of growth rates according to (4.10), thus justifying our approach.

Remark 4.2 Note that if ε2 < t∗ or if t∗ + ε2 < t∗, then there are temporal gaps in the
upper bounds provided by Claim 1. If, for example, ε2 < t < t∗, seemingly we should like
to take the exponent as small as possible, which would imply taking ϕ = 1, yielding the
(trivial) bound t0. This conclusion is also rather redundant as t < t∗ implies that E ≥ C,
or equivalently E−1 ≤ C−1, which is approximately the estimate attained. Thus, the bound
(2.16) appears to most obviously helpful when t < ε2. Details regarding the case t∗ > ε2

will be amplified shortly.

4.3 Estimating Waiting Times

The following claim demonstrates that the waiting times for (4.4)–(4.7) to hold can be made
arbitrarily small.
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Claim 2 Let α, ε, L(0) (and L(t∗), L(t∗), if applicable) be fixed, and let the values of
A, B , and C appearing in the statement of Lemma 4 refer to the values in Theorems 2
and 3. Then by choosing the parameter ρ > 1 in (2.11) sufficiently close to 1, and by taking

(r, ϕ) ∈ 	(α) sufficiently near to II or to (r∗, ϕ∗), respectively, the coefficients ϑ
− 3+α

(3+α)−r

1 and

ϑ
− 2

2−(1−ϕ)r

2 appearing in (4.4)–(4.7) can be taken to be arbitrarily small.

Proof From (2.14) and (2.17), we have that

ϑ
3+α

(3+α)−r

1 = 3 + α

2(3 + α) − 2r

[
(ξBσ1)

r
(3+α)−r + Bϕrρ−r

]
, (4.11)

and that

ϑ
2

2−(1−ϕ)r

2 = 1

2 − (1 − ϕ)r

[
(ξCσ2)

(1−ϕ)r
2−(1−ϕ)r + Cϕrρ−(1−ϕ)r

]
. (4.12)

From the definitions in (2.11) and the definition of 	(α), it follows that

(1) Along I, γ1 = 1 + α − r , γ2 = 1, γ1/(γ2)
2 = γ1, σ1 = 2, σ2 = ∞,

(2) Along II, γ1 = (1 + α) − (3 + α)ϕ, γ2 = −γ1/2, γ1/(γ2)
2 = 4/γ1, σ1 = −(1 + α) +

ϕ(3 + α), σ2 = −(1 + α) + 2ϕ

1−ϕ
,

(3) Along III, γ1 = 0, γ2 = (3 + α − r)/2, γ1/(γ2)
2 = 0, σ1 = (1+α)(3+α−r)

r
, σ2 =

(1+α)(3+α−r)

r−1−α
.

Now

Bσ1ξ = −Bσ1γ1

Aγ 2
2

(1 − ρ−γ2)2, Cσ2ξ = −Cσ2γ1

Aγ 2
2

(1 − ρ−γ2)2.

In Theorems 2 and 3, A = 1 or 2, B = 1
384 (1 − u2)2, and thus 0 < A−1 ≤ 1 and 0 < B < 1.

In Theorems 2 and 3, C = E(t1), E(t2), or E(∞), where t1 > t∗ or t∗ and t2 > t∗. Therefore
E(t1),E(t2) ≤ 1

2 . If Theorems 2, 3 hold with C = E(∞) > 1
2 , they also hold with C replaced

by 1
2 , since C = 1

2 also constitutes as a lower bound for E(t) which is nonincreasing. Thus,
without loss of generality, we may assume that 0 < C < 1. Noting that γ1 < 0 and γ2 > 0
throughout 	(α), it follows that for any (ϕ, r) ∈ 	(α), by choosing ρ > 1 sufficiently close
to 1, we may guarantee that

0 < Bσ1ξ < 1, 0 < Cσ2ξ < 1. (4.13)

The factor 3+α
2(3+α)−2r

in (4.11) is bounded within 	(α), and becomes unbounded as II is

approached. Similarly the factor 1
2−(1−ϕ)r

in (4.12) is bounded within 	(α), and becomes
unbounded as (r∗, ϕ∗) is approached. Since 0 < B,C < 1 and ρ > 1, the terms Bϕrρ−r and
Cϕrρ−(1−ϕ)r in (4.11), (4.12) are bounded from above and below throughout 	(α).

Hence ϑ
3+α

(3+α)−r

1 is positive and bounded within 	(α) and becomes unbounded as II is

approached. Similarly, ϑ
2

2−(1−ϕ)−r

2 is positive and bounded within 	(α) and becomes un-
bounded as (r∗, ϕ∗) is approached. �

Remark 4.3 For ε2 < t < t∗ when (4.5) holds, an upper bound can be ascertained via
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min
(r,ϕ)∈	(α)

S−1(0, t; r, ϕ)

≤ min
(r,ϕ)∈	(α)

{
ϑ

−1/r

2

(
t

ε2

) (1−ϕ)
2

[
1 − ϑ2

−1

[
ε2L2(0)

t

] 2−(1−ϕ)r
2

]− 1
r

}
. (4.14)

The precise growth rate implied by (4.14) is not so clear and it is a bit of a question of how it
is to be defined, though quite obviously it lies somewhere between 0 and 1

3+α
. An analogous

statement may be made in regard to S−1(t∗, t; r, ϕ) when (4.7) holds and t∗ + ε2 < t < t∗.

4.4 Evaluation of ϑ
− 1

r

1 , ϑ
− 1

r

2

For given (r,φ) ∈ 	(α), we see that, as in (4.8), (4.9), the upper bounds which are obtained

contain the factors ϑ
− 1

r

1 , ϑ
− 1

r

2 , where ϑ1 and ϑ2 are prescribed in (2.14), (2.17), respectively.
Thus it is of some interest to evaluate these factors, particularly in the neighborhood of II
and (r∗, ϕ∗), where the upper bounds have been being evaluated.

Claim 3 Let α, ε, L(0) (and L(t∗), L(t∗), if applicable) be fixed, let the values of A, B ,
and C appearing in the statement of Lemma 4 correspond to the values they assume in

Theorems 2 and 3, and let ρ > 1 from (2.11) be chosen sufficiently close to 1. Then ϑ
− 1

r

1

and ϑ
− 1

r

2 are bounded throughout 	(α), and ϑ
− 1

r

1 → 1 as (r, ϕ) → II, and ϑ
− 1

r

2 → 1 as
(r, ϕ) → (r∗, ϕ∗).

Proof Looking at (2.14) and (2.17), we see that we may write ϑ
1
r

1 , ϑ
1
r

2 as

ϑ
1
r

1 = A1B1, ϑ
1
r

2 = A2B2,

where

A1 =
[

3 + α

2(3 + α − r)

] (3+α)−r
(3+α)r

, A2 =
[

1

2 − (1 − ϕ)r

] 2−(1−ϕ)r
2r

,

and

B1 = [
(ξBσ1)

r
(3+α)−r + Bϕrρ−r

] (3+α)−r
(3+α)r ,

B2 = [
(ξCσ2)

(1−ϕ)r
2−(1−ϕ)r + Cϕrρ−(1−ϕ)r

] 2−(1−ϕ)r
2r .

For A1 and A2, we note that

(1) Along I, A1 is bounded and lim(r,ϕ)→(3+α,1) A1 = 1, A2 = 2− 1
3+α ,

(2) Along II, A1 = 1 (by taking limits from within 	(α)), A2 is bounded with
lim(r,ϕ)→(r∗,ϕ∗) A2 = 1,

(3) Along III, A1 is bounded and lim(r,ϕ)→(r∗,ϕ∗) A1 = 1, A2 is bounded with
lim(r,ϕ)→(r∗,ϕ∗) A2 = 1.

Thus, looking at the definitions of A1 and A2, we see that A1, A2 are bounded from below
throughout 	(α), and A1 → 1 along II, and A2 → 1 as (r, ϕ) → (r∗, ϕ∗).

Next we consider B1 and B2. By choosing ρ so that (4.13) is satisfied, B1 and B2 can
be seen to be bounded from below throughout 	(α), and B1 → 1 along II, and B2 → 1 as
(r, ϕ) → (r∗, ϕ∗).



Upper Bounds for Coarsening for the Deep Quench Obstacle Problem 155

Thus by choosing ρ so that (4.13) is satisfied, ϑ
− 1

r

1 ϑ
− 1

r

2 are bounded from below through-

out 	(α), ϑ
− 1

r

1 → 1 along II, and ϑ
− 1

r

2 → 1 as (r, ϕ) → (r∗, ϕ∗). �

Remark 4.4 Throughout the discussion in this section, the upper bounds obtained have been
based on choosing ρ so that 0 < Bσ1ξ < 1, and 0 < Cσ2ξ < 1. We note that it is possible
to obtain upper bounds based on other choices of ρ. For example, the parameter ρ can also
always be chosen so that the two terms appearing in B1 or in B2 are equal.

5 In Summary

In this section we outline the upper bounds which may be concluded by incorporating the
results from Claims 1–3 into Theorems 2 and 3.

Recall that t∗ = sup{{0} ∪ {t > 0|E(t) > 1
2 }} and t∗ = sup{{0} ∪ {t > 0|E(t) > (1−ū2)

4 }}.
In the two theorems which follow, l(t) denotes our measure of the length scale of the system
which is based on S−1(t, t; r, ϕ), where for notational simplicity, its dependence on some
specific choice of the parameters (r, ϕ) has not been indicated.

Theorem 4 ((DQ) with constant mobility) Let |ū| < 1.

I. If t∗ = 0, then

l(t) ≤
[

t

ε2

] 1
3

, t > 0.

II. If 0 < t∗ < ∞, let t1 > t∗ be arbitrary. Then

l(t) ≤
[

t

ε2

] 1
3

, 0 < t ≤ min{t1, ε2},

and

l(t) ≤
[

t − t∗

ε2

] 1
3

, t > t1.

III. If t∗ = ∞, then

l(t) ≤
[

t

ε2

] 1
3

, 0 < t ≤ ε2.

Theorem 5 ((DQ) with degenerate mobility) Let |ū| < 1.

I. If 0 = t∗ = t∗, then

l(t) ≤
[

t

ε2

] 1
4

, t > 0.

II. If 0 = t∗ < t∗ < ∞, let t1 > t∗ be arbitrary. Then

l(t) ≤
[

t

ε2

] 1
4

, 0 < t ≤ min{t1, ε2}.
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and

l(t) ≤
[

t − t∗

ε2

] 1
4

, t > t1.

III. If 0 < t∗ < t∗ = ∞, let t1 > t∗ be arbitrary. Then

l(t) ≤
[

t

ε2

] 1
3

, 0 < t ≤ min{t1, ε2},

and

l(t) ≤
[

t − t∗
ε2

] 1
4

, t1 < t ≤ t∗ + ε2.

IV. If 0 < t∗ < t∗ < ∞, let t2 > t∗ > t1 > t∗ be arbitrary. Then

l(t) ≤
[

t

ε2

] 1
3

, 0 < t ≤ min{t1, ε2},

and

l(t) ≤
[

t − t∗
ε2

] 1
4

, t1 < t ≤ min{t2, t∗ + ε2},

and

l(t) ≤
[

t − t∗

ε2

] 1
4

, t > t2.

V. If t∗ = ∞,

l(t) ≤
[

t

ε2

] 1
3

, 0 < t ≤ ε2.

Note that if E(0) > (1−u2)

4 , then in accordance with Remark 4.3, certain temporal gaps
may appear in the upper bounds. Cases (II) in Theorems 4 and 5 appear to most closely
reflect the dynamics of coarsening for initial conditions which correspond to a perturbation
of a spatially uniform state, in accordance with the discussion in Sect. 4.1. Case (III) in
Theorem 4 and Case (V) Theorem 5 could reflect systems, for example small systems, in
which separation does not occur. Case (IV) in Theorem 5 could correspond, for example, to
some less regular initial conditions.
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